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SECTION 1 

SUMMARY 

Tnis report gives the second Phase (Phase B) results ob- 

tained on NAS 8-11715 contract, in the area of single 

parameter testing. The main objective of t'ne study is to 

put into operation better ways of testing components during 

stage checkout. The expected gains include a reduction in 

component checkout time and improved component performance 

evaluation during checkout. 

Tne result of t'ne study t'nrough Phase B is positive. We 

can test linear active and passive systems that exhibit 

first and second order transfer functions. Tne savings 

include reduced ckeckout time, possible isolation of 

failures, and the ability to test with small signal ampli- 

tudes. 

Many technical areas have been investigated wit'n two tech- 

niques showing direct applicability to the solution of 

single parameter testing of linear systems. 

These techniques are: 

1. Tne growing exponential technique which utilizes a 

specified increasing exponential function as a probing sig- 

nal. 

2. A sampling technique developed from the study in opti- 

1. 



mization techniques. 

Tie r'irst technique involving growing exponential signals 

has been tested experimentially on t'ne analog computer. 

The results for testing systems exhibiting first and second 

order transfer functions is positive, in that parameter 

variations can be measured. Tine main disadvantage with 

this technique is the requirement tinat a nominal system is 

used to null against the actual system. As yet,limitations 

have not been encountered experimentally or mathematically 

in applying t'ne method. 

Tne second technique involving sampling has been considered 

matinematically. The experimental results from the growing 

exponential technique can be extrapolated to t'nis sampling 

method to demonstrate its application in single parameter 

testing. Tine paramount gain is the reduction in the amount 

or' hardware required for implementation. 

Wnat problems require further investigation? Tne growing 

exponential technique must be evaluated in a real system 

application and useful comparisons acquired to evaluate its 

practical competitive position, 

Tne sampling technique must be evaluated in comparison to 

the growing exponential technique in a real system applica- 

tion. 

2. 
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SECTION 2 

INTRODUCTION 

The single parameter testing program was established t o  perform 

mathematical analysis on typical systems of varying complexity, 

The program w i l l  verify t h e  appl icabi l i ty  of single parameter 

tes t ing  t o  launch vehicle system checkout, 

The general technical approach of the study was limited t o  systems 

or devices for  which continuous t ransfer  functions can be w r i t t e n  

and res t r ic ted  t o  t h e i r  l inear regions. Primary emphasis was d i r -  

ected on the identification of changes i n  t he  terms which compose 

the t ransfer  function. 

The approach used was to:  

1, Describe transfer functions and study the changes i n  

behavior with incremental changes i n  i t s  parameter, 

i re . ,  t e r m s .  

2. For each transfer function, investigate the measur- 

a b i l i t y  of performance degradation due t o  changes i n  

the t ransfer  function. O n e  output of t h i s  task w i l l  

be determining the f eas ib i l i t y  of GO, NO-GO, decisions 

based on parameter testing. 

3. Investigate possible theories of measuring single para- 

meters t o  accomplish the measurement of incremental 

changes, and performance degradation due t o  t ransfer  

function changes. 

3. 
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The study is divided in to  three specif ic  tasks: 

Phase A: Simple first,  second, and t h i r d  order l inear  

passive networks whose t ransfer  functions resemble those 

of useful systems, w e r e  t o  be selected for  detai led in -  

vestigation. 

ing t o  higher order systems, 

The resu l t s  w i l l  be used t o  extend the test- 

Phase B: 

described i n  Phase A. This i s  t o  include the l i n e a r  

act ive networks. 

The investigation and selection of c r i t e r i a  

Phase C: 

technical representative, an actual subsystem w i l l  be 

chosen for  analysis, 

rived, and the  techniques developed i n  Phase A and B a re  

t o  be applied t o  the  subsystem. 

W i t h  t he  guidance and approval of the NASA 

The transfer  function w i l l  be de- 

4. 
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SECTION 3 

ACTIVE NETWORKS 

REVIEW O F  GROWING EXPONENTIAL TESTING 

The f irst  phase report (64 SIMAR 59/2) of t h i s  study, 

area of Single Parameter Testing, gave a comprehensive descrip- 

t ion  of a tes t ing  scheme applying growing exponential signals. 

I n  order t o  b r i n g  t'ne basic concept in to  focus a quick review 

i s  i n  order. Tne basic scheme consists of a specialized sig- 

nal generator, the transfer function of in te res t ,  a nominal 

equivalent transfer function, a specialized s e t  of f i l ters ,  

and a l inear estimator, Tne overall  idea i s  t o  generate a 

set of signals matched t o  a t ransfer  function tha t  represents 

a particular par t  of a system transfer  function. 

t i c u l a r  part  i s  the first pa r t i a l  derivative of the system 

transfer function w i t h  respect t o  a parameter. Considered 

i n  s t r i c t  mathematical terms, it i s  t'ne f i rs t  t e r m  i n  a 

Taylor Series Expansion of the system function when the in-  

dependent variable i s  the parameter. 

i n  the 

Tnis  par- 

The discussion t'nus f a r  i s  the heart of the agument of tes t ing  

w i t h  growing exponential signals. Conceptionally, t'nis par- 

t i cu l a r  matching of a par t ia l  derivative may be considered 

similar t o  a simple multiplication of an ordinary complex 

nurriber by i t s  conjugate, 

perty of t'ne squared function or  quadratic offers  mathemati- 

In  both cases the invariant pro- 

5. 
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cal simplicity, 

detailed mathematical description, therefore, as an example, 

change the specialized signal generator into a coordinate 

generator. 

erator represents a coordinate vector and the composite 

signal an entire coordinate system. 

structed to represent a change in a particular parameter, 

so each may be considered a vector proportional to a unit 

parameter change, Wit'n this description, clearly the gen- 

erated coordinate system is related to the first partial 

derivatives as mentioned, 

Tnis is a difficult concept to grasp by a 

Each particular component out of the signal gen- 

Each coordinate is con- 

Now for a moment, consider a system transfer function with 

relation to future time, If the question of prediction is 

considered, clearly no ordinary system can predict what 

state it will exist in at some specified time wit'nout careful 

evaluation of a forcing function up to that particular time. 

If a signal from a sinusodial generator is known to be gen- 

erated at a specific time, clearly, prediction only requires 

a knowledge of tine signal amplitude now and the specific 

interval of time. 

now in regards to the term matching, 

generator is considered as the signal, all t'nat is required 

is the initial amplitude and the time interval to allow pre- 

diction, Hence, if the coordinate system mentioned above 

is used by equivalently reversing the time parameter, the 

concept of matching has been completed, 

This concept should clear up any doubt 

I'f the specialized 

6 ,  
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In an overall view, t'ne matched signal coordinate system l ooks  

exactly like an impulse response of the partial derivative 

system reversed in time, By using this as an input signal 

to the system transfer function an output signal will result 

witin amplitudes assigned to each member of t'he coordinate 

system, Wit'? no parameter change, theoretically a l l  values 

out of the total system would be zero except for the effect 

of Ho(s) on each coordinate. 

pansion allows the system to be equivalent represented by 

H (s) and partial derivative systems in parallel, Hence, 

each partial derivative system will attentuate the coordi- 

That is, t'ne Taylor Series ex- 

0 

nates to zero and all that would be retained is a trans- 

formed input signal coordinate system. 

where @ ( s )  is t'he input signal coordinate system. 

Tnat is Ho(s) @(SI, 

Now the remaining parts of t'ne scheme may be incorporated 

into the picture. If an equivalent nominal system transfer 

function is included in parallel and the same input signal 

is applied, a difference will allow removal of t'ne undesired 

transformed input . Consequently, witin no parameter change 
a null or zero output will exist, Tine filters can be added 

to tine scheme in a serial fashion. Tnat is, filter one 

will extract @1 and all t'ne rest of t-he coordinates, filter 

two will extract Q2 and all higher coordinates, but not Q1 

whic'n will be attenuated. Tnis process can be used to extract 

signals up to Qn in a serial fashion. 

then be scaled in a proper fashion by an estimator based 

The filter outputs can 

7. 
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on a linear regression relation and the output sampled at 

the time a value is known (t = tl). 

estimate of how much a parameter changed at some particular 

The result can be an 

instant 02 time if the matinematics is properly carried 

through, If the sampling instant is conveniently chosen at 

(t = 0) and all scale factors properly carried through the 

mathematics, the result will be a linear function of t'ne 

changing parameter. 

A detailed mathematical discussion of t'nis growing exponen- 

tial scheme is contained in the first phase report of this 

study,and the interested reader should refer all detailed 

question to the detailed mathematics. 

One term t'nat has not been clearly stated is growing ex- 

ponential signals. Tne term clearly comes from tine form 

of the specialized generator output and is tied into the 

fact t'nat linear system impulse response functions are nor- 

mally decaying exponential functions. Consequently, partial 

derivative system functions will also be decaying exponen- 

tial functions, and the matching coordinate system will 

consist of t'ne exponentials with time reversed. Hence, the 

matching signal generator puts out growing exponential sig- 

nals. 

8. 



3.2 ACTIVE NETWORKS INVESTIGATED 

The technique normally applied t o  analyzing an active network 

consists of picking a region of operation and an appropriate 

model that  describes t h e  operation over a specif ic  dynamic 

range. The model then depends on the  physical processes and 

the  ultimate answers t h a t  a re  desired from the  model. Since 

a n  accurate functional model can abstract  the  internal  operation 

of the  physical process only over a dynamic range, limits m u s t  

be specified for  the  val idi ty  of t he  parameters i n  the function- 

a l  model. 

Now the  concept of a s m a l l  signal model can be clear ly  stated,  

The dynamic range is a small signal specified i n  terms of in -  

put-terminal signal condition, and the model parameters are  

the  network parameters. This i n  t u r n  allows the discussion of 

a l inear  act ive network model without describing the complex 

physical process. Thus, it allows t h e  non-linearities i n  the  

physical process t o  be considered outside of the dynamic range 

and detailed questions regarding these non-linearities must be 

referred t o  another model. 

Within t h i s  framework of a limited dynamic range for a par t ic-  

u la r  model, a l l  of the concepts of l inear  system analysis can 

be applied. That is, l i n e a r  d i f fe ren t ia l  equations and corre- 

sponding Laplace and Fourier transforms can be used t o  evaluate 

the s t a t e  of the model, A t  t h i s  point, questions regarding the  

existence of a transform, s t a b i l i t y  properties, system bandwidth, 

9. 



available output power and measureability can be considered. 

I n  order t o  l i m i t  t he  scope of the general system problem 

a specific interpretation must be considered. 

The interpretation of a n  Active system used i n  t h i s  study is 

i n  reference t o  a device that  exhibits a uni la teral  t ransfer  

character is t ic ,  

exhibiting t h i s  uni la teral  character is t ic ,  Consequently, an 

amplifier c i rcu i t  w i l l  be evaluated i n  t e r m s  of the proposed 

method of single parameter tes t ing,  

A simple amplifier is the  most c m o n  example 

A number of amplifier c i rcu i t s  w i l l  be considered. One ampli- 

fier c i rcu i t  to  be investigated is shown schematically i n  Fig- 

ure 3-1 along with the  appropriate equivalent c i r cu i t  or small 

signal model, 

The transfer function relating input t o  output is derived 

Section 3.2.1 as 

i n  

RORL 

or i n  standard form 

e 

e i n  dlS + do 
0 - K S  - - 

r = Tube dynamic plate  resistance 

p = Tube amplification r a t io  

P 

10. 
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FIGURE 3-1 

TRIODE AMPLIFIER AND EQUIVALENT CIRCUIT 
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where 

dl 1 + r /R 
+ 'PI% p 0 

d = (RL + r )/C RORL 
0 P 

Clearly th i s  amplifier f a l l s  into the general category investi- 

gated under t h e  definit ion of f irst  order t ransfer  functions. 

The fac t  tha t  llr 

the  tes t ing required t o  interrogate the p la te  resistance, How- 

ever, ltpll the  tube amplification r a t i o  is  a l inear  function i n  

the  gain and clear ly  f i t s  into the  parameters already measured. 

Another note worthy f ac t  i n  t h i s  t ransfer  function i s  equal 

order of "SI1 i n  both numerator and denominator. 

is  included i n  both "dltl and 'cdotl complicates 
P 

A major assumption i n  the amplifier t ransfer  function concerns 

the va l id i ty  of the model for the tube operation. 

tes t ing  signals must be used that  s a t i s fy  t h e  dynamic range of 

the model i n  order t o  legitimately test  the par t icular  t ransfer  

function. L e t ' s  proceed by obtaining a t ransfer  character is t ic  

fo r  a pentode amplifier as shown i n  Figure 3-2. The appropriate 

small signal equivalent c i rcui t  i n  Figure 3-2 i s  somewhat non- 

conventional, bu t  for  comparison it i s  desirable t o  obtain a 

re la t ion similar t o  a t r i o d e  w i t h  tube amplification and p la te  

resistance as parameters, 

Consequently, 

12. 
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FIGURE 3-2 

PENTODE AMPLIFIER AND EQUIVALENT C I R C U I T  



The t r a n s f e r  func t ion  for  the pentode amplifier i s  derived i n  

Sec t ion  3.2.1 as 

i n  2 3 2 e 
(ds S + d4 S + 1) (d3 S + d2 S + dl s + do) 

w h e r e  
Rk + r 

RL do = - ( 1  + 
CORO 

dl 
rp + Rk 1 +  

RO 

+ 
RL 

- r p c 3 + \ c k ( z  + 1 + 2  r + 
RO d2 - 

d3 = S C  r C 
k P 3  

d4 = R C1 + R .  C + Ri C2 1 1  g 

d5 = Ri R C1 C2 
g 

It i s  i n t e r e s t i n g  t o  see t h a t  plate r e s i s t a n c e  is contained i n  

every c o e f f i c i e n t  of t h e  cubic. However ,  tube transconductance 

(Gm = p/ r  ) i s  normally given for a pentode and t h e  possibil i ty 

exists of examining the active tube parameter as a ga in  co- 

e f f i c i e n t  i n  t h i s  t r a n s f e r  funct ion.  A l s o  no te  t h a t  the order 

P 

of t h e  denominator is high, and it might be d i f f i c u l t  t o  measure 

each of the c i r c u i t  parameters because of the labor ious  calcu-  

l a t i n g  required. One other factor involved i n  t h i s  model i s  

s i g n a l  dynamics, which aga in  j u s t  remain wi th in  the bounds of 

the  model. 

14 . 
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N e x t ,  l e t ' s  examine a transistor amplifier i n  a similar fashion 

t o  t h e  tube c i r cu i t s  i n  order t o  allow some comparison of active 

parameter measurement requirements for  t ransis tors ,  

audio amplifier c i r cu i t  i s  shown i n  Figure 5 along w i t h  the 

equivalent c i r cu i t  i n  Figure 6. 

bias  res i s tor  is assumed perfect i n  order t o  simplify the a l -  

gebra. 

A simple 

The by-pass around the emitter 

The transfer function for  t h i s  t rans is tor  amplifier i s  derived 

i n  Section 3 .2-1  as  

where 

K =  RL Ro =o =o 
re 

1 R~~ + R i ,  -0) - 
re 

do = ( 
R~~ Ri 

1 - U o  
) R g + l  R~~ + Ri 

R~~ Ri e 
+ (  

- 'e dl - - 

d2 = Ce Rg 

The active device parameters appear i n  the gain and two co- 

ef f ic ien ts  of the quadratic denominator term. Consequently, 

15. 
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similar measurements to those required for  the  pentode amplifier 

can be applied t o  t h i s  t ransis tor  amplifier. 

c i r c u i t  loading due t o  the t rans is tor ,  t he  t ransfer  character- 

i s t i c  comes out rather simple i n  terms of the active parameters. 

In  sp i te  of the 

The governing assumption for the development of a l l  three trans- 

fer functions i s  certainly the  model va l id i ty  and the a b i l i t y  

t o  keep signals within model res t r ic t ions.  A common property 

c lear ly  contained i n  a l l  three character is t ics  is  the  active 

parameter i n  the  gain coefficient. I n  the  pentode amplifier 

and the t rans is tor  audio amplifier the t h i r d  order denominator 

term and the second order term can be compared i f  the cubic was 

factored into a quadratic and f irst  order term. 

exhibit  second order denominator terms w i t h  the active element 

c lear ly  contained i n  coefficients . 

Then both would 

The re la t ive  importance of coefficients i n  the  denominator of 

a second order t ransfer  function a re  equivalent t o  the  importance 

of parameters i n  a n  active device. Consequently, a thorough 

evaluation i n  any experimental sense of variations i n  denomi- 

nator coefficients of a second order system, i s  required. 

Normally, the t ransis t ion from one .model of an active network 

t o  another model is based on properties of t h e  active parameters. 

For example, a tube equivalent c i r cu i t  i s  modified when e i ther  

dynamic p la te  resistance o r  tube gain vary appreciably over the  

dynamic range of interest .  I n  the mathematical model some of 

the parameter variations can be included w i t h  a non-linear o r  

16. 
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non-constant function representing the  parameter, In  a s t r i c t  

mathematical sense ,  t h i s  non-linear e f fec t  i s  d i f f i c u l t  t o  in -  

clude but  experimental observations can be made on the analog 

computer simulation. If the basic re la t ions obtained for  a con- 

s t an t  parameter second order system are  used i n  conjunction with 

a saturation e f fec t  type non-linearity, some small range for  the 

model can be established. 

3.2.1 Examples of Active Networks 

3.2.1.1 Triode Amplifier 

The t ransfer  function fo r  the t r iode  amplifier equivalent c i r -  

c u i t  i n  Figure 3-1 is easily obtained from c i r cu i t  equations. 

From the  input voltage divider 

A 

e i n  e =  
g R + Ri 

9 

Labeling currents i n  t he  two loop mesh as I f I I I I  flowing through 

l l r  If and ff3f8 flowing through Ro w e  can eas i ly  w r i t e  the  matrix 

re la t ion 
P 

E = Z I  

or 

Where IIslf is the Laplace operator. 

17. 
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To obtain the currents we apply cramers rule 

1 [ P - ( C R 0  + C% + 1) 
sc 1 

A 
- 

peg RL 

and 
( c % R 0 + C r  R o + C  RL)  S + % + rp 

sc 
A =  

To o b t a i n  the output voltage 

eo = I2 Ro 
plus #'e It into I2 and obtain 

g 

i n  
+ Ri)  L(C %RO + C r RO + C r R ) S + RL + r 

C Ro% I-I Ri e 

g P P L  
- - 

Pi ( R  

or simplified 

3.2-1.2 Pentode Amplifier 

The transfer function f o r  the pentode amplifier equivalent 

c i r c u i t  shown i n  Figure 3-2 can be obtained i n  two parts,  

F i r s t  the input f i l t e r  can be 

i n  terms 

e 
g 

where 

z1 

z2 

impedance as 

z2 
z1 + z2 

1 R + -  
g c1 

1 
l /Ri  + C2 S 

set-up as a voltage divider 

R C I S + l  

c1 

Ri 
1 + RiC2 S 

18. 
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R .  C1 S e H e n c e  
1 i n  

e =  (Ri R 4 C1 C 2 )  S2 + (R  
g g 

C1 + Ri C1 + Ri C 2 )  S + 1 

N e x t ,  the output f i l t e r  can be set up as a m a t r i x  

E = Z I  

or 

1 [31 -zL 
1 [*I I-I eg = [ r p + z l + z L  

-zL zL + sq + Ro 

w h e r e  

z1 

zL 

I2 

w h e r e  

- 1 - - RK - 
_. l + C K S  1 + % C K S  
RK 

RL 
1 + % C 3 S  

I' I 2  It C r a m e r s  rule to  ob ta in  

1 

r +Z1+ZL+[COr ZL+Cor R +C Z Z +C R ( Z  +Z )Is p 0 0 1 L  0 0  1 L 

co 
Since  the output is  

which can be expressed as 

CIe s - - (1 + r +Z + r +Z ) S + r +Z1+ZL 

a a 
RO zL COROZL 

19. 



With some algebra the impedance can be inserted and t h e  

output w r i t t e n  as  
c1 e S (1 + RKCK S )  

3 2 - - 
d 3 S  + d 2 S  + d l S + d o  

where 

d 3 - % K p 3  - C r C  

dl = 1 + r +R + r +R + RKCK (1 + rp /RL)  
L K  pK 

RO RL CORO 

do = 1 ( l + R K + r  ) 

RL CORO 

Inserting the Grid voltage calculated already 

CI RiCl S2 (1 + RKCK S )  e - i n  
eo - 

(d5S 2 + d4 S+l ) (d3s  3 + d2S 2 + dl s + do)  

where 

d5 = RiRgC1C2 

d4 = R C + RiCl + RiC2 
9 1  

Hence the pentode amplifier t ransfer  r a t i o  i s  

e 

e i n  

CI Ri C1 (1 + Q CK S )  S2 
0 -  - - 

d S 2 + d4 S + l ) ( d 3  S 3 + d2 S 2 + dl s + do) 
5 

3.2.1.3 Transistor Amplifier 

The t ransfer  function f o r  the equivalent c i r c u i t  shown i n  

Figure 3&3 can be obtained i n  two parts.  I n  t h i s  case, the 
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f i rs t  par t  is merely a v o l t a g e  d i v i d e r  and t h e  second par t  

a c u r r e n t  divider. 

F i r s t ,  the i n p u t  f i l t e r  c a n  be se t -up  as 

- z2 
z + z2 e i n  1 - 

w h e r e  
R C I S + l  - - 1 Z 1 = R  + - 

g 

1 
Z 2 - R B B + R i + 1 - U  - + C e S  

0 

R~~ Ri r e 

or 
- re R~~ Ri - 

'2 ( R ~ ~  + R ~ )  re + (1 - a O ) ~ B B  R~ + re R~~ R~ ce s 

Hence, a f te r  s i m p l i f y i n g  

e i n  - 

2 - - 
'1 d2 S + dl s + do 

w h e r e  

N e x t  

d2 

dl 

'e Rg 

+ R +  
g 

- a. 

t h e  o u t p u t  c u r r e n t  d i v i d e r  i s  

- a o )  

IO 

where 

RL 
RL + zo (r e 

! h +  
r e 

1 
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e - K S2 - 0 - 
e i n  

(d3 S + l ) ( d 2  sL + dl S + do) 

where 
R C  a R L O O  0 
re 

K =  

3.2.2 I n i t i a l  Condition i n  a System 

I n i t i a l  conditions and constant source valu-s, such a 

D-C bias,  both e n t e r  a transfer function i n  a very similar 

way as  many text books prove. The question here is one of 

measureability of t h i s  source value and where it appears 

i n  t he  t ransfer  characteristic. To observe these proper- 

t i e s ,  consider the definition of a Laplace transform. 

W 

H ( S )  = j f ( t )  exp (-st)  d t  

0 

where s = Laplace transform operator 

f ( t )  = Time function of the source 

Normally an i n i t i a l  value theorem i s  s ta ted so tha t  the 

i n i t i a l  value depends upon a limiting process where c c S ' c  

approaches inf ini ty .  Then t h i s  t ransfer  function can 

only take on non-vanishing values i f  the exponential 

t e r m  does not vanish. 

values of t, and the result  i n  the l i m i t  i s  the i n i t i a l  

This can occur only fo r  very small 

condition. 
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Consider a typical source i n  the general form 

f ( t )  = M tn 

where 

n = 0, 1, 2,  ,,,, a 

M = Scale factor  

c lear ly  

H ( S )  = M n! 
sn+l 
- 

If f ( t )  is merely a bias contained i n  a voltage equation, 

n = 0 and 

Lim H ( S )  = Lim = 0 S 

Since S contains a rea l  and imaginary par t  (S = a  + j w )  

t h i s  c lear ly  shows tha t  the rea l  par t  of S is  required 

t o  go t o  in f in i ty  as  well as the  imaginary part. This is 

required because the integral of an exponential along 

only a ver t ica l  l i n e  would become an undefined quantity 

(except i n  a special  impulse sense), 

This muld  not be clear  i f  the  theorem i s  w r i t t e n  as follows: 

n+ l  
Lim S F(S)  = ] = f ( ” ) ( O )  

d tn  

From t h i s  discussion it i s  apparent tha t  i n i t i a l  condi- 

t ions appear normally as  poles a t  the origin,  

24. 



The next  concern is the measureability of these poles. 

S ince  the growing exponent ia l  technique i s  based on a 

t r a n s i e n t  responce. The non-transient,  D-C or steady 

values can no t  be measured by applying t h i s  technique. 

However ,  the  opposite ques t ion  concerning the u s e  of 

growing exponent ia l s  i n  t e s t i n g  a system w i t h  a pole 

a t  zero does arise. 

system w i t h  a D-C value i s  too block the D-C out of the 

The normal approach i n  t e s t i n g  a 

measuring c i r c u i t .  

t r i c a l  network w i t h  a capac i to r  i n  series wi th  t h e  out-  

put t o  t h e  measuring equipment. 

characteristic for  t h i s  blocking a c t i o n  is  

This can be accomplished i n  an elec- 

A typical t r a n s f e r  

Obviously the pole a t  t h e  o r i g i n  is  removed and replaced 

w i t h  a pole a t  

1 

This complicates the mathematics i n  o b t a i n i n g  an esti- 

mator for  the growing exponent ia l  technique i n  t ha t  it 

adds a pole t o  be considered i n  eva lua t ion  of residues. 

However ,  the basic mathematics is i n  no w a y  limited 

s i n c e  the  presence of a d d i t i o n a l  poles is  n o t  p r e s e n t l y  

considered a l i m i t i n g  factor. 

One requirement i n f e r r e d  i n  a system i n  t h i s  d i scuss ion  

is  s tab i l i ty .  I n  order to test w i t h  growing exponent ia l  

25. 



signals,  a basic requirement is  tha t  bounded or  controlled 

input signals produce controlled or bounded output signals. 

With t h i s  i n  mind, problems associated w i t h  s t a b i l i t y  and 

i n i t i a l  conditions must be assumed answered by another 

means. 

3.3 REDUCING TRANSFER FUNCTIONS 

All of the techniques study thus f a r  depend upon a know- 

ledge of the system transfer function. 

c u l t  t o  obtain for  complex physical systems, however, a t  

l e a s t  three general methods a re  available. The first 

method is  w h e r e  the  system may obey a physical model 

approximation very accurately w i t h i n  some specified dy- 

namic range. In t h i s  instance, calculations based on 

the  model w i l l  r esu l t  i n  a t ransfer  function i n  which 

parameters w i l l  be calculated or experimentally deter- 

mined. The second method is a Bode frequency p lo t  of 

magnitude and phase for  both input and output may be 

obtained with an appropriate variable frequency sinu- 

soidal generator. This w i l l  lead t o  an approximation 

of the  t ransfer  function if appropriate phase and ampli- 

tude character is t ics  a re  properly analyzed. The th i rd  

method is a t ransient  t e s t  where a step or ramp tran- 

s i e n t  input may be used and the t ransfer  function again 

approximated i n  t he  time domain. 

This may be d i f f i -  

The approximation of an actual function m u s t  always con- 

t a in  some error. Control theory usually demands a simple 

26. 



t ransfer  function, thus, t h e  e r ror  is  dictated by rela- 

t i v e  importance of particular poles and zeros. In the  

case of a large number of poles and zeros, the dynamic 

frequency range of the model w i l l  be rest r ic ted.  Thus, 

simplicity and/or reduction of poles and zeros must be 

considered t o  emphasize specific dominant poles and 

zeros. 

One  way of evaluating important system character is t ics  

i s  t o  s p l i t  the  system transfer function up into i t s  

important parts. The general area of control system 

compensation has applied t h i s  concept i n  order t o  manip- 

u l a t e  poles and zeros around the complex plane with the 

objective of achieving a particular time response. 

same scheme is applicable i n  measuring system performance 

and it seems worthwhile a t  t h i s  point t o  investigate some 

of the results. 

This 

A simple demonstration of sp l i t t ing  off important system 

t ransfer  function par t s  i s  easi ly  seen i f  a difference 

scheme is considered. For exap le ,  l e t  the complete 

t ransfer  function consist  of 

Suppose the important factors are included i n  G Z ( S ) .  

Then GT(S) - G3(S) = G2(S) 

and c lear ly  

G3(S) = G 2 ( S )  tG1(S) - 11 
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The r e s u l t  indicates t h a t  an effective system transfer function 

G (S) can be obtained by subtracting a more co!npIex function away 

from the t o t a l  system function. T h i s  r esu l t  seems t r i v i a l ,  but 

compare t h i s  w i t h  t h e  ordinary methods used when the system char- 

a c t e r i s t i c  is  complicated. Pole and zero locations a re  observed 

i n  the  calculated transfer function and thrown out when appro- 

pr ia te ,  t o  simplify the transfer function with l i t t l e  regard fo r  

the  actual dynamic range. The measureability of parameters i n -  

cluded i n  the modified transfer function w i l l  n o t  be the same 

fo r  these two cases. 

2 

Another means of reducing a complicated function i s  by cascade 

o r  feedback compensation. This introduces the possibi l i ty  of 

poles and zeros entering t h e  measurable transfer function because 

of imperfect cancellation. However, it may offer the poss ib i l i ty  

of a simplified function for reducing the system compared t o  the 

simple difference scheme above. 

The reduction process offers the  poss ib i l i ty  of investigating 

higher order systems i n  terms of important parameters i n  lower 

order systems. However, limitations w i l l  ex is t  i f  the l inear i ty  

of a system function i s  i n  question. The position of the trans- 

f e r  function i n  the algebra used, requires a commutative property 

exhibited only fo r  l inear  time invariant systems. 



3.4 LAGUERRE FUNCTION SET 

The growing exponential signals a re  matched t o  pa r t i a l  deriva- 

t i ves  with respect t o  particular parameters . Consequently, 

some approximation of the pa r t i a l  derivative system i s  required. 

This approximation problem can be d i f f i c u l t  and it seems worth- 

while t o  examine the properties of the functions used, For ex- 

ample, when many parameters a re  related t o  the same characteris- 

t i c  frequency, the approximating function can involve the Laguerre 

set of orthonormal functions. This set has a l l  of the properties 

of a f i n i t e  dimensional coordinate system. That i s ,  any partic- 

u la r  function can be expressed i n  terms of a sum of a f i n i t e  

number of t e r m s .  The form of each term i s  a constant multiplied 

by one of the members of the Laguerre se t ,  Since each m e m b e r  

of the  Laguerre set i s  orthogonal t o  a l l  others over the interval 

t = 0 t o  inf ini ty ,  and the sum contains only 44N14 terms, the s e t  

c lear ly  exhibits a l l  of the normal properties of a f i n i t e  dimen- 

sional coordinate system. Two properties tha t  t h i s  Laguerre set 

exhibits are  worth noting. Firs t  each member i s  contained i n  

a l l  higher order members, fo r  example L contains L1 and Lo, The 2 

second property i s  the exponential multiplier times a 

specific polynomial i n  the time parameter. ??lis i s  exactly 

su i t ed  t o  approximating l inear system impulse response functions 

fo r  causal systems. 

The following s ix  

functions. 

I -  
Lo = d2p 

functions represent the f i r s t  s ix  Laguerre 

exp ( -Pt 1 
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- 
L1 = J 2 p  (2p t  - 1) exp ( -Pt 1 

- 
= J 2 p  (2p2 t2  - 4pt + 1) exp (-Pt 1 

= J 2 p  (4/3 p 3 3  t - 6p2t2 + 6pt - 1) exp (-Pt 1 

L2 

L3 

L4 

L5 

- 

- 
= J 2 p  (2/3 p4t4 - 16/3 p3t3 + 12p2t2 - 8pt + 1) e ~ p ( - ~ ~ )  

- 
= J2p (4/15 p5t5 - 10/3 p4t4 + 40/3 p3t3 - 20p 2 2  t 

+ l O p t  - 1) exp ( -pt 1 

and t h e  gene ra l  term i s  

n-2 (2pt)"  - n(2ptln-' + n(n-1) ( 2 p t )  = J2p [ 
n! (n- l ) !  21 (n-2)! Ln 

n-3 
+ + (-1p 3 ,p(-pt) - n(n-1) (n-2) ( 2 p t )  

where 

p = the pole loca t ion  or one over the time cons tan t  

t = time 

n = 0, 1, 2 ,  3,  - - - - *  N 

The s ix  func t ions  are calculated for  a pole l o c a t i o n  of one 

half or a time cons tan t  of t w o  seconds and are shown i n  Figure 

3-4. A short d i g i t a l  program w a s  w r i t t e n  so t h a t  values of all 
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six of these functions could eas i ly  be obtained for  use a s  

i n i t i a l  conditions i n  t he  specialized growing exponential 

generator. A l l  tha t  i s  required fo r  program use i s  the  par t i -  

cular  pole location. Any specified time can be evaluated or  

the  points representing the e n t i r e  function when par t icu lar ly  

low values are  desired. 

3.5 SEOND-ORDER SYSTEM - DEN01 DJATOR PARA lETERS 

The transfer  function is t h e  same as  tha t  on page 41 of the 

Phase A report, namely, 

cls + co s + 5  - H ( S )  = - 
s2 + dlS + do s2 + 2 s  + 10 ' 

which is  also w r i t t e n  

cls + co 

( s  + a ) *  + B 2  
H ( S )  = 

The pa r t i a l  derivatives of H ( S ) ,  giving the component pa r t i a l  

systems corresponding t o  do and dl, a r e  

-s(cls + co 
H ( S )  = - s  

S 2 + d s + d 0  % =  1 

- ( C I S  + co) 
2 H ( S )  = a H  - - - 1  

a dl s2 + dlS + do 



The probing signals a r e  the same a s  on page 42 of the Phase A 

report ,  namely, 

- (-s + J a 2  + 8 2 )  

(-s + a ) 2  + B 2  
Q1(s) = J2a 

and 

- (-s nJa2 + P 2 )  [(-s + 8 2 1  
= J2a $ 2  [(-s + a l 2  + p 2 1 2  

The matrix components f o r  the p a r t i a l  systems are  found by 

integrating a s  i n  the Phase A report, b u t  the work involved 

i s  much greater because of the greater complexity of the 

integrands. As an example, the matrix component (hll)dl is 

found from 

2 n j  c 

Evaluation of t h i s  integra is  extremely tedious and affords 

numerous opportunities for making errors. T h i s  necessitates 
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1 cOa 
2 (5 + 218 

a2 + $  

- 
16 a 

a l o n g  procedure  of s o l u t i o n  and c o r r e c t i o n  cycles i n  order 

t o  o b t a i n  a g e n e r a l  s o l u t i o n ,  The f i n a l  r e s u l t s  are 

1 
2 2 2  32a (a  +$ ) 

and  

L 

1 

a' + 6' 

(cl + co ) 1 
16 a2 

(- 

a2 + $ 2  

uL- $ -1 
4u2(a2 + $ 2 )  CCf + co a2+ $ 2  1, 

-1 
2 2  2 8a ( a + 6 )  

The c o e f f i c i e n t s  of H ( s )  and Q 2 ( s )  are  chosen t o  be cos J[ and 

s i n  JI f r o m  c o n s t a n t  energy  c o n s i d e r a t i o n  as i n  the  Phase A 

report and the  parameter modulation m a t r i x  i s  formed as 

1 
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where Mal = [Hdll  [=Os s i n  $1 Jr 

The numerical r e s u l t s  for  dl = 2 and do = 10, which make 

a = 1 and 8 = 3, are  

and 

which is  normalized t o  

I -0.01875 

0,015 

-78.71 

38.30 1 
1.644 2 . 055 

0.5924 -1 
normalized M-' - - 

The tes t ing is  carried out with an analog computer, using 

the same arrangement as when tes t ing the numerator parameters 

of the second order system (see the Phase A report)  except 

t ha t  the estimator is  changed t o  re f lec t  the  new M-I, See 

Figure 3-5, The probing signal is shown i n  Figure 3 - 6 ,  
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Figure 3-6 

Input Probing Signal 

3.5.1 EXPERIMENTATION 

The system was tested f i r s t  with variations of dl and do of 

2 ,  4, 6, 8, 10, 20 and 30% under otherwise nominal conditions. 

Variations i n  do w e r e  readily measured up t o  10% from nominal, 

but there was considerable influence by do variations on the  

estimator channel which should measure dl variations, so tha t  

the  l a t t e r  could not be measured by themselves. However, by 

1 plo t t ing  dl versus do on a set of contours of constant d 

and do variations of both parameters can be measured. 

natively, when limits have been set on do and dl, contours 

such a s  those i n  Figure 3-12 can be used t o  decide whether 

A l t e r -  

or not the system is acceptable. 

Although l inear i ty  of measurements became poorer as the varia- 

t ions  approached 30%, as  seen i n  Figure 3-8 and 3-10. Never- 

theless, Figure 3-14 indicates t ha t  the l inear i ty  was re- 

markably good up t o  a t  least  t e n  percent. Deteriorating 

l inear i ty  can probably be a t t r ibu ted  t o  the inaccuracy in -  

curred by not using the higher order t e r m s  i n  the Taylor 
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Series expansion into par t ia l  systems (reference Phase A re- 

port ,  page 1 2  ). 

It was found tha t  the isolation of do measurements could be 

optimized by s l igh t  adjustment of the estimator, so t ha t  

the  estimator used i n  t h e  tes t s  became 

1 . 644 2 . 055 
M-l - - 

0 . 7954 -1 

3.5.2 NON-LINEAR DAMPING 

The gain of the feedback element controll ing damping (P16 i n  

Figure 3-5).was varied non-linearly a s  i n  Figure 3-13. M e a -  

surements w e r e  made with a l inear  range of 18 and 36 volts. 

The results are shown i n  Figures 3-15 and 3-16. Plots com- 

paring the measurements of parameter variations a re  shown 

i n  Figure 3-14. 

t o  of fse t  the measurements by an approximate value without 

appreciably affecting the slopes of the p lo ts  of estimated 

versus actual variations of the parameters. 

The effect  of the  damping non-linearity was 

I N P U T  SIGNAL .-q 
/ 

I 

I 

dl[ ; 
I 

Figure 3-13 

n -L inear Deadband 
On Damping Coefficient 

/Y I 

I 
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The isolation of the measurement of do variations from dl 

variations was somewhat deteriorated by inclusion of the 

non-linearity, as can be seen i n  Figure 3-16, where there  

is  some variation of the d 0 measurement from an i n i t i a l  

o f fse t  value, 

could not be isolated from do variations,  even w i t h  a l inear  

(As mentioned ea r l i e r  the measurement of dl 

system 1, 

305.3 N O I S E  TESTS 

Noise was added t o  the probing signal and the plots  of Figures 

3-17 and 3-18 resulted, 

less than 26 db r e s u l t  i n  highly uncertain measurements. 

noise was inserted into both the  nominal system and the tes ted 

system from independent generators. Because of equipment 

l imitations,  it was necessary t o  make a l l  the system time 

constants t e n  times shorter so t ha t  the  noise bandwidth would 

encompass the signal frequencies, 

a change i n  the time base so that  the r e s u l t s  a re  en t i re ly  

compatible w i t h  a l l  others i n  t h i s  report. The signal-to- 

noise r a t io  was measured by the r a t i o  

Note that  signal-to-noise ra t ios  

The 

This, of course, was only 

peak rms voltage of the signal 
average rms noise voltage 
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SECTION 4 

SYSTEM CONFIDENCE SAMPLING 

4.1 SUMMARY 

A method of measuring the confidence of a transfer function 

has been established. Tne method gives value to and com- 

pares all the parameters of the transfer function that are 

unchanged if the value of one sample taken at a particular 

time is unchanged. The procedure requires relatively small 

amounts of equipment, when compared to the growing expmen- 

tial method, and is easily adapted to any transfer function. 

Tine time for measurement is approximately 5 times the time 

constants of the circuit (i.e., the same as the growing ex- 

ponential method). The method can not however, synthesize 

what parameter is bad without providing a series of inde- 

pendent probing signals to establish what parameter has 

changed. 

-' 

4.2 INTRODUCTION 

In the Phase A report of this study, a limited introduction 

to the concepts of optimization were discussed. In this 

discussion it was pointed out that the testing OS system 

performance by feedback control has a potential possibility 

of providing rapid test of operation with relatively small 

amounts of equipment, when compared to t'ne method of growing 

exponentials. Because of t'nis potential savings in equipment, 



the procedure was investigated further. 

In the growing exponential theory, the impulse respmse of 

the partial system convoluted with the input signal gives 

the functional 

(Note: This is E q .  3-27, Phase A Report 
SIMAR 59/2) 

where h .(t) is tine weighting function of a filter and f. (t) 

is the i-th input signal. 
J 1 

Letting T = 0 the equation gives the value of a sample of 

the output signal at T = 0 thus, obtaing 

h.(t) fi(t) dt. 
h jk = J + ,  - a ,  J 

Let us propose a question. 

response of t'ne desired system reversed in time was con- 

Wnat would happen if the impalse 

voluted with the weighting function (impulse response) of 

the actual system being tested? 

at time T = 0, then the value of the sampe will be 

If tine results are sampled 

.c 

f:(t) dt 

if the parameters of the system are unchanged. 

If the system has changed parameters, then the value of the 

sample will be different. Tne only exception will occur 

if both the shape and the size of the weighting function 
52. 



change i n  proper  amounts t o  n u l l i f y  t h e  changes. 

Now suppose a s i g n a l  i s  appl ied and forced  t o  be orthogonal  

t o  the  impulse response of t h e  d e s i r e d  system over nega t ive  

t i m e ,  Tne r e s u l t s  of th i s  r e s u l t a n t  convolut ion i n t e g r a l  

sampled a t  T = 0 w i l l  be essent ia l ly  zero. If the  system 

has changed parameters ,  t'ne sample may no t  be zero. The 

one cond i t ion  which would al low t h e  sample t o  equal  ze ro  

would be a change i n  ga in  i n  t h e  measured system, wi th  no 

change i n  shape of the weighting func t ion ,  Therefore,  a 

tes t  tha t  could be performed on a system i s  t o  provide 

as a s i g n a l  t h e  negat ive  time impulse response t o  tine sys- 

t e m  and measure the change i n  the response of the system 

a t  a predetermined time. T h i s  would al low s p e c i f i c a t i o n  of 

of a --No G o  system tes t  which would g i v e  a n  i n d i c a t i o n  

t h a t  a l l  of t h e  parameter a r e  w i t h i n  s o m e  l i m i t s .  

4.3 NEGATIVE TIME IMPULSE RESPONSE 

The negat ive  time response of a network can be obta ined  

f r o m  t h e  inve r se  Laplace t ransform of the  t r a n s f e r  func- 

t i o n  by r e p l a c i n g  t'ne operator  ( s )  by ( - s ) ,  

The genera t ion  of t h i s  func t ion  can be pu t  i n t o  a genera l -  

i z e d  form for  any t r a n s f e r  func t ion ,  Tnis gene ra l i zed  

f o r m  was discovered by t h e  i n v e s t i g a t i o n  of o p t i m u m  feed- 

back control. Wnile t h e  d e r i v a t i o n  i s  complicated,  t he  
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results are i n t u t i v e .  Any t r a n s f e r  f u n c t i o n  can be repre- 

s e n t e d  by the fo l lowing  diagram as  r e p o r t e d  i n  t h e  Phase I 

report. 

Figure 4-1 

Analog Computer S imula t ion  of m y  
Trans fe r  Funct ion  

To g e n e r a t e  t he  impulse response f u n c t i o n  reversed i n  t i m e  

refer t o  t h e  diagram i n  Figure 4-2 

Tne o n l y  d i f f e r e n c e  i n  the two diagrams i s  t h a t  the  s i g n s  

of the c o e f f i c i e n t  t e r m s  a l t e r n a t e ,  For example, i f  t h e  

t r a n s f e r  f u n c t i o n  i s  

cls + c 
0 

H(s) = 7 

S L  + dls + d 
0 
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Figure 4-2 

Analog Computer Simulation of Any 
Impulse Generation 

- c s + c  
t'nen 

1 0 H ( - S )  = 

Tnus, g iv ing  a l t e r n a t i n g  s igns  i n  the diagram. 

say tha t  

fer func t ion  can be generated simply, and w i t h  ve ry  l i t t l e  

equipment. 

The r e s u l t s  

the negat ive  time impulse func t ion  for any t r a n s -  

I f  the transfer f u n c t i o n  i s  of t h e  forms 

0 
C 

s + do 
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t h e n  simple p o s i t i v e  feedback gene ra t e s  t h e  nega t ive  t i m e  

impulse response func t ion ,  

Tnese s i g n a l s  t'nen can be fed i n t o  t h e  system under test, 

and a sample taken  a t  t i m e  T = 0, If a s i g n a l  independent 

t o  t h e  impu l se  func t ion  i s  d e s i r e d ,  t h e  inpu t  t o  the first 

i n t e g r a t o r s  i n  t h e  diagram can be used as a n  i n p u t  s i g n a l ,  . 
i r e . ,  X l ( t ) .  

This s i g n a l  w i l l  be independent of t h e  imulse response 

q ( t ) ,  where: q ( t )  = -c 

and if suppl ied  t o  the system under test  would g i v e  anot'ner 

independent check of whet'ner t h e  system's parameter w e r e  

bad or good when sampled at a p a r t i c u l a r  time, I n  

s o m e  p a r t i c u l a r  ca ses ,  a s i g n a l  ort'nogonal t o  the impulse 

func t ion  over  nega t ive  t ime m a y  be supp l i ed  t o  t'ne s y s t e m  

t o  be tested. These p a r t i c u l a r  cases are: when t h e r e  i s  

o n l y  one t e r m  i n  t'ne numerator of t'ne t r a n s f e r  func t ion ,  

For example, 

x (t)  + %-2 X 3 ( t )  - ,,.. c X i ( t ) ,  0 N-1 2 

T = 0. 

C 
0 

s + do 

sL + s dl + do 

2 
e t c .  c2 

s3 + s2 d + dls + do 2 
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In tinese cases tine output of any integrator in the diagram 

will supply an orthogonal signal to the impulse function 

overall negative time. 

To test which parameter has changed several independent, 

signals would have to be provided each designed to measure 

one or more parameters. 

would approach sinusoidal testing. 

nals could be obtained by setting various sets of coefr'i- 

cients c to zero. An experimental program could estab- 

lish tine measuring sensitivities of t'ne particular para- 

meters with respect to the coefficient c 

particular set of probing functions could possibly be 

found which would measure a set of parameters. 

is not recommended for parameter measurement since the 

growing exponential method performs t'ne measurement of 

several parameters with one probing signals. 

Tne testing time for this procedure 

T'nese independent sig- 

i 

Tnus, a i' 

This method 

The main importances and uses of the method discussed here 

are : 

a. Confidence checking of the system parameters. 

b. Equipment requirements are less than the growing expo- 

nential method, 

c. Tnis test saves time in measuring for confidence checking. 
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Wnere are we going? Tine Phase C effort will be pointed in 

the direction of a simulated system with a linear system 

transfer function associated with a Saturn Subsystem. Tne 

objective will aim at answering the pertinent questions 

posed above, Other established applicable techniques and 

questions will be extended within the time and money avail- 

able. 

5 8 .  



- -  

SECTION 5 

CONCLUSIONS AND RECOMMENDATIONS 

1 
I 
1 
I 
1 
I 
8 
1 
8 
I 

1. 

2. 

3.  

4. 

5. 

6. 

7 .  

It has been demonstrated that  l i n e a r  a c t i v e  networks can 

be i n t e r p r e t e d  as l i n e a r  system t r a n s f e r  func t ions  w i t h  

l i m i t e d  i n p u t  s i g n a l  amplitudes. 

Experimental r e s u l t s  c l e a r l y  demonstrate t h e  a b i l i t y  t o  

measure v a r i a t i o n s  i n  c o e f f i c i e n t s  of genera l  f i r s t  and 

second order  t r a n s  fer func t ions  . 
Non-linear p r o p e r t i e s  i n  c o e f f i c i e n t s  of a c t i v e  networks 

may be ignored i f  t h e  s i g n a l  amplitude can be l imi t ed  t o  

t h e  l i n e a r  region.  

Simultaneous v a r i a t i o n s  i n  many parameters may require 

longer  t e s t i n g  rou t ines  t o  establish the va lues  of each 

parameter v a r i a t i o n .  

Noisy s i g n a l  degradat ion i n  the measuring process  i s  

independent of t h e  complexity of t h e  system under in-  

v e s t i g a t i o n .  This i s  i l l u s t r a t e d  by the 26 db S/N 

f o r  first and second order  systems. 

Absolute measurement accuracy i s  a func t ion  of system 

complexity, as i l l u s t r a t e d  by t h e  contour  i n  Figure 3-12. 

Complicated t r a n s f e r  func t ions  can be reduced by a 

d i f f e r e n c e  technique or a compensation technique. 

RECOMMENDAT1 ONS 

The technique of u t i l i z i n g  growing exponent ia l  i npu t  probing 

s i g n a l s  must be eva lua ted  on a real  system and compared on a 

competi t ive basis w i t h  e x i s t i n g  checkout methods . 
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